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Abstract
The report provides a critical review of the paper
”PESNet: Ab-Initio Potential Energy Surfaces
by Pairing GNNs with Neural Wave Functions”
by Nicholas Gao and Stephan Günnemann. In
it, the authors describe a new approach combin-
ing Graph Neural Networks (GNNs) and neural
wave functions to solve the Schrödinger equa-
tion for multiple molecular geometries simul-
taneously, significantly reducing computational
costs. This review summarizes the main contri-
butions, strengths, limitations, and potential fu-
ture research directions based on the findings of
the paper.

1. Introduction
The paper ”PESNet: Ab-Initio Potential Energy Surfaces
by Pairing GNNs with Neural Wave Functions” addresses
the computational challenges in solving the Schrödinger
equation for multiple molecular geometries with neural
networks. Using neural wave functions as a represan-
tion of the quantum wave function still requires separate
self-supervised trainings with the Variational Monte Carlo
(VMC) framework for each geometry, leading to high
computational costs. Orthogonal research has been con-
ducted to reformulate the eigenvalue problem of solving
the Schrödinger equation as a supervised regression task. It
models the system with graph neural networks (GNN) and
takes features like position and charge of the nuclei and re-
gresses on its energy. The labels come from classical sim-
ulation like Coupled Clusters (CC) and Density Function
Theory(DFT). However, as graph neural networks became
very performant in the task, the error of the simulated data
to the real-world data is larger than the error of the neu-
ral network. The authors propose PESNet, which leverages
GNNs to parameterize a neural wave function, allowing si-
multaneous resolution of the Schrödinger equation for mul-
tiple geometries. The significance of this approach lies in

its ability to capture the potential energy surfaces (PES)
more efficiently and accurately, which is crucial for under-
standing molecular interactions and reactions. It combines
the strengths of GNNs and neural wave functions approach
to model the quantum state of molecular systems.

2. Method Summary
The proposed PESNet architecture integrates a MetaGNN
with a wave function model (WFModel) to generate param-
eters for multiple molecular geometries. The MetaGNN
processes the nuclei coordinates and charges, outputting
parameters that adapt the WFModel for specific geome-
tries. This method captures continuous subsets of the po-
tential energy surface in a single training pass, enhancing
efficiency. Key components of the approach include:

• Variational Monte Carlo (VMC) Framework: The
use of VMC allows for an efficient and flexible ap-
proach to approximate the ground-state wave func-
tions by minimizing the energy expectation value.
This is used to train the neural wave function model.

• Equivariant Coordinate System: To handle physical
symmetries and ensure the wave function respects the
symmetries of the molecular system, an equivariant
coordinate system is introduced.

• MetaGNN Architecture: The MetaGNN encodes the
molecular geometry information and produces param-
eters that are used by the WFModel. This includes
various layers such as message-passing layers that
capture interactions between atoms.

• Wave Function Model (WFModel): The WFModel
is responsible for generating the wave function given
the parameters from MetaGNN. It includes neural net-
work components designed to approximate the com-
plex quantum state of the system. They use FermiNet
as a basis for the model and edit it to be more effi-
cient and accurate. This is done by introducing an in-

1



055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109

variance to nuclei reindexing by summation instead
of concetanation and by decreasing the solution space
using the Equivariant Coordinate System. The model
is trained using the VMC framework.

The combination of these components allows PESNet to ef-
ficiently and accurately model the potential energy surfaces
for a variety of molecular geometries. The interactions be-
tween the MetaGNN and WFModel are depicted in figure
1.

Figure 1. Schematic of PESNet. For every molecular struc-
ture, the MetaGNN processes the charges and distances and
parametrizes the WFModel. Given these, the WFModel evalu-
ates the electronic wave function. (Image taken from the paper)

3. Relation to Literature
The paper builds on previous works that employ neural net-
works for quantum mechanical calculations. The authors
reference various surrogate models and neural wave func-
tion methods, highlighting the limitations of existing ap-
proaches and positioning PESNet as a significant advance-
ment.

3.1. Comparison with Traditional Surrogate Models

Traditional surrogate models require labels from classi-
cal quantum mechanical simulations leading to errorenous
data. Several works are summarized here.

• SchNet: In ”SchNet: A Continuous-filter Convolu-
tional Neural Network for Modeling Quantum Inter-
actions” (Schütt et al., 2018), the authors propose
SchNet, a deep learning model designed to predict
molecular properties. It uses continuous-filter convo-
lutional layers to handle molecular graphs, capturing
both geometric and chemical information effectively.
It was not used in the PESNet paper.

• HiGNN: In ”Hierarchical Graph Neural Networks
for 3D Molecular Structure Prediction” (Yang et al.,

2019), the authors introduce a hierarchical approach
to graph neural networks for predicting 3D molecular
structures. The proposed model combines local and
global graph information, enabling it to capture both
fine-grained atomic interactions and broader structural
patterns. This approach significantly enhances the ac-
curacy of molecular property predictions and the un-
derstanding of molecular dynamics. It was not di-
rectly used in the PESNet paper.

• DimeNet: In ”Directional Message Passing for
Molecular Graphs” (Klicpera et al., 2019), the au-
thors introduce the DimeNet model, which uses di-
rectional message passing for molecular graphs. It
improves upon traditional GNNs by incorporating di-
rectional information between atoms, allowing for a
more accurate representation of molecular structures
and better predictions of quantum mechanical prop-
erties. The angles between atoms are taken into ac-
count by using spherical Bessel functions. Together
with the distances of the atoms in the molecule em-
bedded with radial Bessel functions the message pass-
ing functions are modelled. The authors of PESNet
use a revised version of DimeNet as their MetaGNN
leaving out the cutoff and envelope as their WFModel
already takes care of only modelling wave functions
that decay to zero far away from the molecule. Like
DimeNet it encodes the molecular geometry informa-
tion with charges, distances of the nuclei and angles
between them. The model is then used to generate pa-
rameters for the WFModel.

• Other recent work: More recent work focuses
on how to incorporate calculations from quantum
chemistry to make the ground truth labels more ac-
curate. This includes models like QDF (Tsubaki
& Mizoguchi, 2020), EANN (Zhang et al., 2019),
UNiTE (Qiao et al., 2021), ∆-ML models (Wengert
et al., 2021). The main problem however still persists:
All of the surrogate models focus on solving quantum-
mechanical calculations from simulated and not real
ground truth data. PESNet aims for the exact calcula-
tions from first-principles using only inductive biases
and the Schrödinger equation itself to solve it.

3.2. Advances over Neural Wave Function Methods

Physicists normally used traditional self-consistent field
methods such as Hartree-Fock, Density Functional Theory
(DFT) or Coupled Cluster (CC) to solve the Schrödinger
equation by first simplifying the representation of the quan-
tum system and then employing a specific solver. However,
these methods are computationally expensive and often re-
quire significant approximations. In combination with the
VMC framework, neural wave functions have been pro-
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posed as a mean to represent the wave function of quan-
tum system in a compressed but yet accurate way. The
first work was ”Solving the Quantum Many-Body Problem
with Artificial Neural Networks” (Carleo & Troyer, 2017)
where they used neural networks to create a variational
represantion of quantum states. The first models that dealt
with larger systems were FermiNet (Pfau et al., 2020) and
PauliNet (Hermann et al., 2020). Both models were able
to solve the Schrödinger equation for larger systems and
with higher accuracy than traditional methods. On top of
that, recently PsiFormer (von Glehn et al., 2023) which is a
transformer-based model. All models are trained with the
VMC framework, but others like the Diffusion Monte Carlo
can also be used like in this paper with FermiNet (Wilson
et al., 2021) or in the PauliNet paperw where they compare
DMC and VMC.

• FermiNet: FermiNet is a neural network model that
approximates the many-body wave function of a quan-
tum system. It uses a graph neural network archi-
tecture that respects the antisymmetry of the wave
function, allowing it to model the quantum state of
many-electron systems accurately. It uses Slater De-
terminants for the antisymmetry and the Kronecker-
factored approximate curvature (KFAC) as an ap-
proximation to natural gradient descent. It uses a
permutation-invariant architecture to handle the indis-
tinguishability of electrons and is able to model the
cusp conditions by using nondifferentiable input fea-
tures. FermiNet is used as the basis for the WFModel
in the PESNet paper.

• PauliNet: PauliNet is another neural network model
designed to solve the electronic Schrödinger equa-
tion for many-electron systems. It uses a deep neural
network architecture that respects the Pauli exclusion
principle, ensuring that the wave function is antisym-
metric with respect to the electron coordinates. This
model has been shown to achieve high accuracy in
predicting quantum mechanical properties of molecu-
lar systems. As FermiNet it uses the slater determinant
so that the wave function is antisymmetric. On top of
that, PauliNet integrates physical constraints, such as
the cusp conditions - the behavior of the wavefunc-
tion when electrons approach each other or the nuclei
- directly into the neural network by using Jastrow fac-
tors. Thus, PauliNet has a stronger inductive bias than
FermiNet when modelling the wave function.

• PsiFormer: PsiFormer is a transformer-based model
that leverages self-attention mechanisms to model the
quantum wave function of many-electron systems. It
uses a transformer architecture to capture long-range
interactions and dependencies within the molecular
system. As the self-attention layer is permutation

equivariant, the model becomes invariant to the or-
dering of atoms and molecules. Like PauliNet and
FermiNet it uses the slater determinant to model the
antisymmetric total wavefunction. The authors of the
PsiFormer paper claim that their model is more effi-
cient and accurate than FermiNet and PauliNet.

3.3. Other works combining meta models with neural
wave functions

• DeepErwin: The model DeepErwin introduced in
the paper ”Gold-standard solutions to the Schrödinger
equation using deep learning: How much physics do
we need?” (Gerard et al., 2022) combines the Fer-
miNet model with the SchNet model. Furthermore, it
uses a equivariant coordinate system like in PESNet,
however local, centered on every nucleus. They also
propose a new way of enveloping the wave function,
giving it less freedom for faster convergence, lower
final energies, and lower variance.

4. Strengths
PESNet demonstrates several strengths, including:

• Efficiency: By handling multiple geometries simulta-
neously, PESNet reduces the computational cost sig-
nificantly compared to traditional methods that train
separately for each geometry. On large molecules the
speedup can be up to 40 times as it can be seen in the
table below 2.

• Accuracy: The use of GNNs and neural wave func-
tions enables PESNet to model the potential energy
surfaces with high accuracy, on par with FermiNet
which is trained for every geometry as can be seen
in figure 3.

• Incorporation of Physical Symmetries: The use
of an equivariant coordinate system ensures that the
model respects the symmetries of the molecular sys-
tems, leading to more physically accurate representa-
tions and more efficient training.

• Scalability: The architecture of PESNet is designed to
be scalable, allowing it to handle larger and more com-
plex molecular systems effectively. PESNet is able to
handle larger molecules than other meta-learning ap-
proaches as DeepErwin as it can be seen in the table
below 2.

5. Limitations
Despite its strengths, PESNet has some limitations:



165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

Figure 2. Total GPU (A100) hours to train all models of the re-
spective figures. PESNet is up to 40 times faster than FermiNet
and in all benchmarks faster than DeepErwin. It also more scal-
able as DeepErwin is not able to handle the largest molecules.
(Image taken from the paper)

Figure 3. Potential energy surface scan of the nitrogen molecule.
PESNet yields very similar energies than FermiNet. Without the
MetaGNN the accuracy drops significantly. (Image taken from
the paper)

• Scalability to Extremely Large Systems: While
PESNet is scalable, its performance and accuracy is
unclear on extremely large molecular systems with
many atoms.

• Validation Range: The paper demonstrates results on
a limited range of molecular geometries and configu-
rations. More extensive validation across a broader set
of molecules would be beneficial.

6. Challenges and Future Research Direction
There are several challenges of the paper that could be ad-
dressed in future work:

• Assumptions in Model Training: The model as-
sumes that the chosen training configurations are
representative of the entire potential energy surface,
which may not always be the case in complex sys-
tems where VMC needs special sampling methods. In
complex molecular systems, the potential energy sur-
face can have many local minima, saddle points, and
diverse regions. If the training configurations do not
adequately represent the entire potential energy sur-
face, the model may not perform well in regions of
the PES that were underrepresented or not sampled

during training.

• Interpretability: Neural networks, including PES-
Net, often suffer from interpretability issues, making
it challenging to understand the underlying reasons
for certain predictions or errors. This can be an is-
sue when actually using the model in practice in drug
desing for example, as it is important to understand
why the model makes certain predictions.

• Handling Larger Systems: Extending PESNet to
handle larger and more complex molecular systems,
potentially through architectural enhancements or
more efficient training methods.

• Improving Symmetry Integration: Developing
more sophisticated methods to integrate physical sym-
metries, further improving the accuracy and robust-
ness of the model.

• Robust Training Methods: Exploring alternative
training methods and frameworks to enhance the gen-
eralizability and robustness of PESNet. This also in-
cludes the evaluation fo different optimizers and dif-
ferent sampling methods.

• Expanding Validation: Conducting more extensive
validation studies across a broader range of molecules
and configurations to establish the generalizability of
PESNet.

7. Conference Review Perspective
As ICLR reviewers of the paper confirmed by putting it into
the ICLR Spotlight position, the paper is very innovative,
combining two state-of-the-art orthogonal research direc-
tions to solve a very hard problem in quantum chemistry.
The paper is well-written and clearly presents the method-
ology, results, and implications of the research. It also is
clearly structured, so that even people without knowledge
in chemistry can understand the subject. Furthermore, the
figures helped a lot to get an insight into the model and the
research. As an example, the figure 4 explains the whole
model architecture graphically. The experimental evalua-
tion is thorough, demonstrating the efficiency of the pro-
posed PESNet model. Overall, the paper is a significant
contribution to the field of computational quantum chem-
istry.

8. Extension in the Community
PESNet influenced subsequent research. Since its introduc-
tion, there have been several extensions and new research
directions:

• PESNet++: The authors extended on their model one
year later with additional features and an additional
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Figure 4. The PESNet architecture is split into two main compo-
nents, the MetaGNN and the WFModel. The MetaGNN processes
the molecular geometry information and generates parameters for
the WFModel, which evaluates the electronic wave function. (Im-
age taken from the paper)

inductive bias by introducing physically-motivated re-
stricted neural wave function models in their paper
”Sampling-free Inference for Ab-Initio Potential En-
ergy Surface Networks” (Gao & Günnemann, 2023).
It reduces energy errors by up to 74%.

• PlaNet: In the same paper of PESNet++ (Gao &
Günnemann, 2023), the authors introduced PlaNet, a
sampling free model that trains a surrogate model to
predict the potential energies of different geometries
directly. In PESNet, the inference would yield a wave
function. To get the actual potential energy from it,
a Monte-Carlo method has to be used which scales
quartic in the number of electrons. PlaNet is able to
predict the potential energy directly from the nuclei
geometries.

• Weight-sharing for molecular deep neural net-
works: The PESNet paper inspired the authors of the
paper ”Solving the electronic Schrödinger equation
for multiple nuclear geometries with weight-sharing
deep neural networks” (Scherbela et al., 2022) and
underlined their observation that the specific solution
space in this problem can be exploited by sharing
weights and thus restricting the parameter space.

• Globe and Moon: In another paper ”Generalizing
Neural Wave Functions with Equivariant Graph Neu-
ral Networks” (Gao & Günnemann, 2023), the au-
thors introduced Globe and Moon, two models that
generalize the neural wave function models to differ-
ent molecular systems. As PESNet is only able to
model the potential energy surface of one molecule,
and DeepErwin still need retraining for each structure,
there is a need for a model that can generalize to dif-
ferent molecules. Graph-learned Orbital Embeddings
(Globe) reparametrizes the wave function depending
on the molecular structure, so it only looks at atoms
and does not consider electrons. The Molecular Or-

bital Network (Moon) represents the electronic wave
function, but encourages local interaction by incorpo-
rating spatial message passing.

9. Conclusion
PESNet is a significant advancement in th computational
quantum chemistry field. It addresses the high compu-
tational cost by deploying a meta model that uses self-
supervision to accurately predict potential energy surfaces.
Its results and innovative use of GNNs demonstrate poten-
tial for further research and application. This report has
summarized the key contributions, strengths, limitations,
and future directions for PESNet, providing a critical re-
view.
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Klicpera, J., Groß, J., and Günnemann, S. Directional Mes-
sage Passing for Molecular Graphs. In International
Conference on Learning Representations, September
2019.

Pfau, D., Spencer, J. S., Matthews, A. G. D. G., and
Foulkes, W. M. C. Ab initio solution of the many-
electron Schrödinger equation with deep neural net-
works. Physical Review Research, 2(3):033429, Septem-
ber 2020. doi: 10.1103/PhysRevResearch.2.033429.

Qiao, Z., Christensen, A. S., Manby, F. R., Welborn, M.,
Anandkumar, A., and Miller III, T. F. UNiTE: Unitary N-
body Tensor Equivariant Network with Applications to
Quantum Chemistry. arXiv:2105.14655 [physics], May
2021.

Scherbela, M., Reisenhofer, R., Gerard, L., et al. Solv-
ing the electronic schrödinger equation for multiple nu-
clear geometries with weight-sharing deep neural net-
works. Nature Computational Science, 2(5):331–341,
2022. doi: 10.1038/s43588-022-00228-x.
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