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1 Background and Derivation

1.1 Machine Learning, Neural Networks and Training

Machine Learning uses data observations to generalize in the presence of uncertainty. Instead of
using fixed basis functions for the introduction of non-linearity, Neural Networks fix the number of
basis functions in advance but allow them to be adaptive. To learn its parameters v, minimizing
an appropriate loss function Ei(v) averaged over all data samples M is required. This leads to the
optimization problem

x∗ := argmin
v∈Rd

E(v) with E(v) = 1

M

M∑
j=1

Ej(v), (1)

which is referred to as training in machine learning. Unlike algorithms like the support vector machine
where the basis functions are fixed, optimization problems of Neural Networks are high-dimensional,
non-convex and might lean to being NP-hard in general. Local optimization algorithms like Gradient
Descent and in particular its stochastic variants work surprisingly well. They often reach very good
(in the sense that they generalize well) local minima compared with the global optimum. There are
however numerous other global optimization methods that are investigated for the training of neural
networks.

1.2 Particle Swarm Optimization (PSO)

One of those algorithms is Particle Swarm Optimization (PSO) which was initially introduced by
Kennedy and Eberhart [8]. It solves (1) by considering N particles described by triplets (Xi

k, V
i
k , P

i
k)

with k denoting the iteration number and i the particle number. Xi
k ∈ Rd and V i

k ∈ Rd describe the
position and velocity, and P i

k ∈ Rd the local best position of particle i at iteration k. Gk ∈ Rd with
Gk = argmini E(P i

k) denotes the global best up to iteration k. The particle velocity and position
are updated according to

V i
k+1 = V i

k + c1r
i
k(P

i
k −Xi

k) + c2R
i
k(Gk −Xi

k) (2)

= V i
k + γik + ηik

Xi
k+1 = Xi

k + V i
k , (3)

where

γik =
c1
2
(P i

k −Xi
k) +

c2
2
(Gk −Xi

k)

ηik =
c1
2
r̃ik(P

i
k −Xi

k) +
c2
2
R̃i

k(Gk −Xi
k)

with the deterministic contribution γik and the stochastic one ηik. c1 and c2 are known as acceleration
coefficients, rik and Ri

k are two different random variables distributed uniformly with U(0, 1), r̃ik and
R̃i

k are then distributed uniformly with U(−1
2 ,

1
2), and the vector Gk describes the position of the

best particle of the swarm. Every particle is dragged towards its own historical best position and
the global best position communicated in the swarm - formalized as a local attractor pik the particle
converges to

pik =
c1r

i
kP

i
k + c2R

i
kGk

c1rik + c2Ri
k

or

pik = ψi
kP

i
k + (1− ψi

k)Gk, where ψi
k =

c1r
i
k

c1rik + c2Ri
k

Often in PSO, c1 = c2 and this equation simplifies to

pik = ψi
kP

i
k + (1− ψi

k)Gk, where ψi
k ∼ U(0, 1). (4)
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1.3 Quantum-Inspired PSO

The Quantum-Inspired PSO was first introduced by Sun et al. [10] and Yang et al. [11] and was
improved in several works since then in e.g. [9] or [3]. The local attractor of particles in PSO can be
thought of as a particles in a Newtonian attractor potential field where particle i moves toward the
local attractor pik with its potential energy declining to zero like a returning satellite orbiting the
earth. We can now extend this imagery to the quantum mechanical case where the particles have
the same attractor, but are described by quantum-mechanical bound-state equations. We use the
Schrödinger equation at an infinitely high potential well—an often used simple approximation for
quantum mechanics in physics

i
∂

∂t
Ψ(X, t) = ĤΨ(X, t)

with Ĥ = − ℏ
2m
∇2 + V (x̂)

with mass m, potential field V (x) and Hamiltonian Ĥ. We start by defining the one-dimensional case
and denote the position of the particle as X, the attractor as p and the variable Y = X − p. With p
being the center of an infinitely high potential wall and L its characteristic length, the position of
the particle can be described with the quantum-mechanical one-dimensional wave function

Ψ(Y ) =
1√
L
exp−

|Y |
L . (5)

In quantum mechanics, the probability density function of a particle is given by Q(Y ) = |Ψ(Y )|2.
To sample from this in a quantum mechanical system, we just observe the particle which makes its
wave function to collapse to one position. By using its cumulative distribution function F (Y ) =
1− exp (−|Y |/L) and the Markov Inverse sampling we can also simulate this classically with

Y = ±L
2
ln

1

u
with u ∼ U(0, 1) (6)

which can be straightforwardly extended with the local attractor pik and with Xi
k = Y i

k + pik to the
d-dimensional update rule of particle i at iteration step k + 1,

Xi
k+1 = pik ±

Li
k

2
ln

1

uik
with uik ∼ U(0, 1) (7)

The characteristic length of the potential wall Li
k can now either be modelled as

Li
k = 2α|Xi

k − pik| (8)

or using the mean best Ck = 1
N

∑N
i=1 P

i
k as

Li
k = 2α|Xi

k − Ck|.

By iteratively updating the positions of the particles after (7) with the local attractor (4), evaluating
their fitness scores and updating personal, global and potentially mean best a competitive optimizer
for non-convex loss landscapes can be designed.

1.4 Consensus-Based Optimization (CBO)

CBO uses a finite number of interacting agents X1, . . . , XN to explore the domain with a drift
in the direction of the consensus and a stochastic diffusion term, and to form a global consensus
about the minimizer x∗ as time passes [2, 4, 6, 7]. In contrast to PSO, CBO is easy enough to be
theoretically analyzable on the one hand but sophisticated enough to be competitive in applications
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on the other [1,5]. After initializing the system with independent initial data (Xi
0 ∼ ρ0)i=1,...,N for a

suitable measure ρ0 (typically a multi-variate normal distribution with certain mean and covariance
matrix), the dynamics of each individual particle Xi at time step k can be formally described as
follows.

Given a time horizon T > 0 and a time discretization t0 = 0 < ∆t < · · · < K∆t = T of [0, T ], we
denote the location of agent i at time k∆t by Xi

k∆t, k = 0, . . . ,K. For user-specified parameters
α, λ, σ > 0, the time-discrete evolution of the i-th agent is defined by the update rule

Xi
(k+1)∆t =X

i
k∆t −∆tλ

(
Xi

k∆t − xα(ρ̂Nk∆t)
)
H
(
E(Xi

k∆t)− E
(
xα(ρ̂

N
k∆t)

))
+ σ

∥∥Xi
k∆t − xα(ρ̂Nk∆t)

∥∥
2
Bi

k∆t,
(9)

Xi
0 ∼ ρ0 for all i = 1, . . . , N, (10)

where ((Bi
k∆t)k=0,...,K−1)i=1,...,N are independent, identically distributed Gaussian random vectors

in Rd with zero mean and covariance matrix ∆tIdd [5].
The dynamics (9) of each particle is governed by two competing terms. Firstly, a drift term

∆tλ
(
Xi

k∆t − xα(ρ̂Nk∆t)
)
H
(
E(Xi

k∆t)− E
(
xα(ρ̂

N
k∆t)

))
(11)

drags the respective agent towards a momentaneous consensus point xα(ρ̂
N
k∆t), which is computed as

a weighted average of the agents’ positions given by

xα(ρ̂
N
k∆t) :=

N∑
i=1

Xi
k∆t

ωα(X
i
k∆t)∑N

j=1 ωα(Xi
k∆t)

, with ωα(x) := exp(−αE(x)). (12)

It serves as a guess for the global minimizer and is motivated by the fact that

xα(ρ̂
N
k∆t) ≈ X

g
k∆t with g = argmin

i=1,...,N
E(Xi

k) for α≫ 1,

i.e., xα(ρ̂
N
k∆t) is close to the current best position among the particles. Thus it ensures that the

particles are approximately moving into the correct direction, namely the direction of the minimizer x∗.
The univariate function H : R→ [0, 1] is often taken to be H ≡ 1, but can be also used to deactivate
the drift term for agents whose objective is better than the momentanous consensus, so H(x) ≈ 1x≥0

with x := E(Xi
t) < E(xα(ρ̂Nt )). For the development of the CBO algorithm with exponential noise

we will assume H ≡ 1. Secondly, a diffusion term, given by

σ
∥∥Xi

k∆t − xα(ρ̂Nk∆t)
∥∥
2
Bi

k∆t (13)

randomly moves particles to feature the exploration of the energy landscape of the objective function E .
The further away the particles are from the common consensus xα(ρ̂

N
k∆t), the greater the noise

scaling factor
∥∥Xi

k∆t − xα(ρ̂Nk∆t)
∥∥
2
.

Ideally, through the drift-diffusion mechanism of the CBO the agents reach a near optimal global
consensus, so that the associated empirical measure

ρ̂Nt :=
1

N

N∑
i=1

δXi
t

(14)

converges to a Dirac delta δṽ at some ṽ ∈ Rd close to x∗.

1.5 CBO with exponential noise

Like Particle Swarm Optimization is changed by using inspiration from quantum mechanics, this
document describes how to extend consensus-based optimization being inspired by quantum mechan-
ics. In equation (8), the local attraction point of the particle swarm algorithm is used to determine
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the length of the imagined potential wall and therefore the strength of the noise for every particle as
described in equations (6) and (7). The noise is then added to the local attraction point to create a
quantum-inspired version of the Particle Swarm optimization. For the Consensus-based optimization
we take the same approach. We use the attraction point that is given by equation (12) and employ a
quantum-mechanical bound state as in equation (5) using this new point. The stochastic dependency
of CBO to the distance can be integrated then via the modelling of the characteristic length of the
well. Furthermore, as the attraction point is now identical for all particles, a convex combination of
the particle position and the actual quantum-inspired term is taken.

This leads to

Xi
(k+1)∆t = (1− β)Xi

k∆t + β

(
xα(ρ̂

N
k∆t)±

Li
k∆t

2
ln

1

uik∆t

)
= Xi

k∆t − β(Xi
k∆t − xα(ρ̂Nk∆t)) +

β

2
Li
k∆t

(
± ln

1

uik∆t

)
= Xi

k∆t − λ∆t
(
Xi

k∆t − xα(ρ̂Nk∆t)
)
+ σ∆t

∥∥Xi
k∆t − xα(ρ̂Nk∆t)

∥∥
2
B̂i

k∆t (15)

with

Bi
k∆t = (± ln

1

uik∆t

) with uik∆t ∼ U(0, 1) (16)

xα(ρ̂
N
k∆t) :=

N∑
i=1

Xi
k∆t

ωα(X
i
k∆t)∑N

j=1 ωα(X
j
k∆t)

, with ωα(x) := exp(−αE(x)) (17)

σ∆t = σ
√
∆t (18)

Li
k∆t =

∥∥Xi
k∆t − xα(ρ̂Nk∆t)

∥∥
2

(19)

α, λ, σ ≥ 0 and β ∈ (0, 1)

with which we hope to minimize
∥∥xα(ρ̂NK∆t)− x∗

∥∥
2
. As in standard CBO, the dynamics (15) of each

particle is governed by two competing terms. Firstly, a drift term

λ∆t(Xi
k∆t − xα(ρ̂Nk∆t)) (20)

drags the respective agent towards a momentaneous consensus point xα(ρ̂
N
k∆t). This is as in the

original CBO method. Secondly, a diffusion term, given by

σ
∥∥Xi

k∆t − xα(ρ̂Nk∆t)
∥∥
2
B̂i

k∆t (21)

again randomly moves the particles to explore the energy landscape of the objective function E .
Compared to the standard CBO and its diffusion term (13), the CBO variant proposed herewith
employs not a Gaussian but an exponential noise distribution B̂i

k∆t in equation (16) with more
stochastic mass on its tails leading to greater exploration, but less exploitation capabilities as can be
seen in Figure 1)

Through the specific modelling of the characteristic length Li
k∆t in equation (19) we achieve the

same scaling as in the standard CBO.
The update rule (15) together with exponential noise leads us to the following algorithm:
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Figure 1: Comparison of the Gaussian and exponential distribution. The exponential function has a heavier tail and therefore
greater exploration capability. The Gaussian function has greater exploitation capability as more probability mass is located
around the mean.

Algorithm 1: Consensus-based Optimization Algorithm with Exponential Noise

Input: Population size N , time steps K, time step length ∆t, consensus weight α,
exploration parameter σ

Output: Near optimal solution
1 Initialize particles Xi

0 randomly with a Gaussian distribution (10);
2 for k ← 1 to K − 1 do
3 for particle i do
4 Evaluate fitness E(Xi

k∆t) of each particle;
5 Calculate the attractor xα(ρ̂

N
k∆t) with (17);

6 Update position Xi
(k+1)∆t with (15);

7 end

8 end
9 Evaluate fitness E(Xi

K∆t) of each particle;
10 Output best solution;

2 Integration into CBXpy and runner implementation

The CBO algorithm with exponential noise is integrated into CBXpy by writing a custom noise
sampler that can then be used in several Particle Dynamics tasks like CBO, but for example
Consensus-based Sampling, PolarCBO, and others. The custom noise sampler is an exponential
sampler with a random sign assigned to the output.

Code snippets of the integration can be found in Figure 2 showing the implemented code.
To run large-scale experiments, we also implemented an experiment runner suite and visualizations.
Several code snippets of this runner can be found in Figures 9, 10, 11. In Figure 12 a key code
snippet for the loading of the results is depicted and in Figure 13 one of the many visualization
functions is depicted - here for heatmaps in subplots.
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(a) The implementation of the exponential noise sam-
pler using numpy.

(b) The implementation of the exponential noise sam-
pler using torch.

Figure 2: The sampler can be used to create a isotropic, anisotropic or covariance noise that behave differently in each dimension.
Those noises can then be used to created different versions of all the particle dynamics algorithms like CBO, CBS, PolarCBO.

3 Numerical Experiments

In this section, we present numerical experiments to compare the performance of the CBO algorithm
with exponential noise with the standard CBO algorithm (with Gaussian noise). To run large-scale
experiments, an experiment runner was written which hyperparameter settings could be set by
using .yaml files. It automatically saves the results into an .csv file, that can then be used by
various visualization functions to draw information from the results. In the experiments, mainly the
optimization of the Rastrigin function is considered. Its parameter space is thoroughly tested to
compare the CBO with Gaussian and exponential noise. The Rastrigin function is a non-convex
function with many local minima and a global minimum at the origin. We compare the performance
of the CBO algorithm with exponential noise and Gaussian noise in terms of the convergence rate
and the quality of the solutions found. The success factor is defined as the percentage of runs in
which the algorithm finds a function value below the second best minima.

3.1 Mean-Field behaviour

The first question that arises is how the algorithm behaves in the mean-field limit. Fornasier, Klock
and Riedl explored in their paper ”Convergence of Anisotropic Consensus-Based Optimization in
Mean-Field Law” the convergence of the CBO method and found an exponential convergence in the
mean-field. This rate is independent of the dimensionality of the problem. The result for the CBO
with Gaussian noise could be confirmed with own experiments and can be seen in Figure 3. For
CBO with exponential noise we take the same parameters and try to find a similar correlation. As it
turns out, even with exponential noise, the mean-field convergence stays on its exponential trend
with almost the same convergence rate of exp(−0.94(2λ− σ2)t).

(a) The mean-field behaviour of CBO with Gaus-
sian noise.

(b) The mean-field behaviour of CBO with ex-
ponential noise.

Figure 3: A depiction of the mean-field behaviours of CBO with Gaussian and exponential anisotropic noise. For the Rastrigin
function E(v)=

∑d
k=1v

2
k+

5
2
(1−cos(2πvk)) with x∗=0 and several local minima, we evolve the discretized system of isotropic and

anisotropic CBO using N = 10000 particles, discrete time step size ∆t = 0.01 and α = 1015, λ = 1, and σ = 0.32 for different
dimensions d ∈ {2, 3, 4, 5, 6}. We observe in both cases that the convergence rate of the energy functional V(ρ̂Nt ) is independent
from d and lies at around (2λ− σ2). However, the guess her sth is missing
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3.2 Hyperparameter Performance with different Dimensionality

To thoroughly study the hyperparameter settings and differences for CBO with Gaussian and
exponential noise several experiments with different lambda and sigma values are created. This
subsection should give an insight into how success probability depends on their relationship of the
method with different dimensions of the objective function. As you can see in the Figure 4, both
CBO with Gaussian and exponential noise become very sensitive to the hyperparameter setting. It
can be seen that CBO with exponential noise needs a not as high sigma as the CBO with Gaussian
noise. That was as expected, as the exponential noise has more probability mass on its tails leading
to greater exploration capabilities of the CBO algorithm.

Figure 4: A demonstration of the increased sensitivity of hyperparameter settings with increased dimensionality. On the left
side the CBO is depicted, on the right side the QCBO. Both are evaluated with d = 5, 10, 15, 20, 25, 30.

3.3 Hyperparameter Performance with different Alpha values

In this subsection the influence of the alpha values is investigated. The alpha value controls the
weight of the consensus point in the CBO algorithm with exponential noise. It does not impact the
hyperparameter sensitivity of neither the CBO with Gaussian noise nor the CBO with exponential
noise as the Figure 5 shows.

3.4 Hyperparameter Performance with different number of particles

Another experiment that has been conducted is to map the relationship between the the number of
particles, sigma and lambda. Plotting sigma on the x-axis and the number of particles on the y-axis,
we recognize a probability distribution with quadratic contour arises when using the CBO with
exponential noise. This probability distribution is then linearly shifted along the x-axis with changing
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Figure 5: The Figure captures the differences in the success probability with different hyperparameter settings of λ and σ
observed at different values of α. Both dynamics are evaluated at alpha = 100, 10000.

lambda values. The same happens with the CBO with Gaussian noise - even if the distribution
contours seem far broader than the CBO exponential one. This can be seen in Figure 6 for CBO
with Gaussian noise and in Figure 7 for CBO with exponential noise. The more narrow probability
distribution than the CBO with Gaussian noise indicates a higher sensitivity to hyperparameters.

Figure 6: CBO with Gaussian noise: It is apparent that the higher the sigma and the higher the lambda, the higher the success
probability

3.5 Real-world Machine Learning Applications

We see that CBO and QCBO behave fairly similar when optimizing the machine learning landscape
of a neural network with one hidden layer for the MNIST dataset. The model used is a multi-layer
perceptron with a hidden layer of 100 neurons, 1D batch normalization, and cross entropy loss. The
experiment shows that the heavy-tailed noise does not have much influence on the exploitation
capability needed in neural network optimization. The diagram showing the accuracy over epochs
can be seen in Figure 8.
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Figure 7: For CBO with exponential noise, we see a higher sensitivity to the hyperparameter settings than in the CBO with
Gaussian noise.

Figure 8: It can be observed that CBO with exponential noise works similar on a neural network optimization as the one with
Gaussian noise. For both, the same parameters were used: α = 50.0, ∆t = 0.1, σ = 0.1, λ = 1.0, max it = 200
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4 Interpretation and Discussion

Integrating exponential noise into the CBO algorithm has shown similar results as the CBO algorithm
with Gaussian noise. Our tests show that CBO with exponential noise maintains almost the same
strong convergence rate as with Gaussian noise in the mean-field limit. This suggests that using
exponential noise does not affect the ability of the algorithm to converge. One of the key takeaways
is that CBO with exponential noise has similar behaviour during the optimization process. Even
though the hyperparameter settings are naturally different, Gaussian and exponential noise sigma
and lambda interactions take the same forms across different number of dimensions and alpha values.

In practical applications, such as optimizing neural networks, both noise models performed
similarly. It shows that exponential noise does not hinder the algorithm’s ability to exploit promising
solutions but improves exploration without sacrificing accuracy.

In the future, it would be interesting to explore how exponential noise performs in more complex
optimization problems and across different machine learning models.
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Additional Figures

Figure 9: The runner class initializes large-scale experiments for by loading an ExperimentConfig that was obtained from .yaml
files. The function run experiment is responsible for running all the different configurations and saving it as a ExperimentResult.
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Figure 10: The run dynamic configs function runs all configurations and before includes the second-best minima objective
energy values.
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Figure 11: The run dynamic config runs one configuration and gives out the result.
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Figure 12: This class is responsible for saving and loading results.
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Figure 13: This function generates heatmaps in a subplot.
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Figure 14: Those two functions are the main responsible ones for converting a .yaml file into a generator of experiment
configurations.
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